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Abstract. Expected calibration error (ECE) is a popular metric to mea-
sure and calibrate the inconsistency between the classification perfor-
mance and the probabilistic class confidence. However, ECE is inade-
quate to reveal why the deep model makes inconsistent predictions in
specific samples. On the other hand, the class activation maps (CAMs)
provide visual interpretability, highlighting focused regions of network
attention. We discover that the quality of CAMs is also inconsistent
with the model’s final performance. In this paper, to further analyze this
phenomenon, we propose a novel metric—VICE (Visual Consistency), to
measure the consistency between performance and visual interpretability.
Through extensive experiments with ECE and VICE, we disclose that
the model architectures, the pre-training schemes, and the regulariza-
tion manners influence VICE. These phenomena deserve our attention,
and the community should focus more on a better trade-off in model
performance and interpretability.

Keywords: Visual consistency - Expected calibration error - Model
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1 Introduction

Besides pursuing superior performance via deep neural networks, its inter-
pretability has increased attention in risk-sensitive real-world scenarios. In sce-
narios such as finance and medical care, where industry users are eager to know
how the AI systems make decisions, deep neural networks still have a long way
to yield complete interpretability. Trustworthy AI is less likely to be built by
black-box models. It is thus a significant challenge to achieve an effective bal-
ance between performance and interpretability.

Expected calibration error (ECE) [22] is a metric to measure the inconsis-
tency between the final classification performance and the probabilistic class
confidence. Minimizing ECE could yield more accurate calibrated confidence.
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Fig. 1. The reliability diagrams on VOC2012Aug.

However, ECE and the calibrated confidence are inadequate to reveal why the
deep model makes inconsistent predictions. As shown in the bottom right of
Fig. 1, from the reliability diagrams of ECE, we can observe that the deep model
is prone to over-confidence.

On the other hand, the class activation maps (CAMs) [34] is widely used to
provide model’s interpretable cues, providing consistent visual interpretability
with human cognition. As shown in the bottom left of Fig.1, the quality of
CAMs is inconsistent with the sample loss. The average quality of the CAMs
varied considerably between samples in neighbouring loss bins.

In this paper, we propose a novel metric—VICE, to measure the consistency
between performance and visual interpretability. The top figure of Fig. 1 com-
pares the differences between ECE and VICE, which are defined explicitly in
Sect. 2 and Sect. 3, respectively. Our contribution can be summarized as fol-
lows,

(1) We propose VICE as a novel sample-wise fine-grained metric, to evaluate
the consistency between model performance and visual interpretability in a
new perspective.

(2) With case studies on five heterogeneous models, we found a series of inspiring
conclusions involving the model capacity and architectures, the pre-training
schemes, and the regularization mechanisms. Specifically, blindly increasing
the model capacity may harm model interpretability; models with visual
attention have better visual interpretability but worse consistency between
model performance and visual interpretability; self-supervised pre-training
and additional regularization learn more interpretable feature representa-
tion. These guide us to leverage more significant impact factors for trust-
worthy model design.

2 The ECE Metric

2.1 Revisiting the Expected Calibration Error

Expected calibration error (ECE) [22] is a popular tool to measure the dis-
tribution difference between the probabilistic confidence and the classification
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accuracy. More detailed, the samples are evenly partitioned into M bins accord-
ing to their confidence scores, measuring the differences between accuracy and
confidence. ECE allows us to better judge the risk of the model’s unexpected
predictions.

2.2 Extend ECE for Multi-label Classification

Here, we first extend ECE to multi-label (ML) classification, which is a better

approximation of realistic scenarios and more approaching to human cognition

than single-label classification. Since multi-label classification assigns multiple

labels to each sample, we define ML-accuracy (Eq. 1) and ML-confidence (Eq. 3)

of samples in each bin, to enable ECE to realize evaluation under multi-label

classification.
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In Eq.1, y; is the true set of labels, §; be the predicted set of labels. ML-
accuracy is measured symmetrically how close y; is to g; [9].
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Equation 3 calculates the ML-confidence. If the confidence of a category p; .
is greater than a threshold ¢ (usually be set as 0.5), the model believes that the
category is present in the image. So the confidence for that sample is represented
by the average of all the confidence above this threshold. If the model does not
exceed the threshold for all categories, then the maximum posterior probability
is taken as the confidence of the sample.
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Equation 4 extends ECE to ECEyqp, for multi-label classification.

3 The Proposed VICE Metric

3.1 Motivation

In many trials, we found an inconsistency between the performance of the deep
learning models and their visual interpretability. Some samples with low loss
have poor visual interpretability, with incomplete CAM coverage, while some
other samples with relatively complete CAMs have biased predictions, as shown
in Fig. 1. Such inconsistencies lead to restricted and unreliable applications. A
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model with good interpretability is not only consistent in confidence and accu-
racy (with lower ECE). In applications with a firm reliance on visual inter-
pretability, we expect the good-performed models to be more interpretable and
consistent with human perception. So we tend to introduce a sample-wise per-
spective to fine-grained measure the consistency of performance and visual inter-
pretability, which is referred to as VICE (VIsual ConsistEncy). If a model has a
good visual consistency, the visual interpretability output by the model will focus
on the object itself for correctly predicted samples, and for incorrectly predicted
samples we can find the reasons for poor performance in visual interpretability,
such as label noise, background effects, etc.

In the following part of this section, we describe how to calculate the con-
sistency of performance with visual interpretability. We first present two types
of visual interpretability corresponding to CNN and Transformer architectures,
then use a sample-wise loss to characterize the network performance on the
corresponding samples, and finally calculate VICE to indicate the consistency.

3.2 The Visual Interpretability of CNNs and Transformers

Due to the different architectures of CNN and Transformer, the manner of gen-
erating CAMs is different As for a CNN, we follow the setting from [34] to
generate a CAM M, . for class ¢, which is calculated as:

cnn Z Wy fk (5)

C

M¢,,, directly correlates with the importance of a particular spatial location
for a specific class ¢ and thus functions as visual interpretability of the category
predicted by the network.

The approach in [2] is adopted to generate CAMs for vision transformer. The
layer’s operation on two tensors X and Y is denoted by L™ (X,Y). The two
tensors are the input feature map and weights for layer n. Relevance propagation

follows the generic Deep Taylor Decomposition [21].

3.3 The Quality for Visual Interpretability

The segmentation labels of CAMs are related to human cognition, and the quality
of a CAM is the degree to which it conforms to human cognition. To evaluate
the quality of visual interpretability (CAMs), we use the mean Jaccard index
to measure the consistency of CAMs and segmentation labels. The definition is
shown in Eq. 6.

|Mcam N Mgt|
JI(MpaTn?Mgt Z |McamUM9t| (6)

A higher JI score means the model has higher quality CAMs with better
visual interpretability.
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3.4 The Sample-wise Performance

The sample-wise multi-label loss is used as an indicator of the model perfor-
mance,

1 _
losssuw(z,y) = = & > yelog[(1 + exp(—a.)) ]
¢ 7
exp(—a.) ©
1+ exp(—z.)
As shown in Eq.7, the error is measured by calculating the sigmoid cross-

entropy between the output layer and the labels. Equivalently, the binary cross-
entropy loss is calculated for each category.

+ (1 —y.)log|

3.5 The Final VICE

We quantitatively estimate the consistency between performance and inter-
pretability by measuring the pearson correlation coefficient between sample-wise
loss and the quality of CAMs. And the '—’ of lossg, is to allow positive corre-
lation.

Sy (lossi — @) (JIZ- — ﬁ)
VS0, (loss; — Toss) \/ S, (J1; — TT)?

For samples with low loss, the model with a higher VICE score can give better
visual interpretability than with a lower score. While for samples with high loss,
we can also observe the reasons for their prediction errors via their CAMs. As
shown in the top figure of Fig. 1, the VICE and ECE);, evaluate the consistency
between performance and interpretability from different perspectives.

VICE = p(loss, JI) =

(®)

4 Empirical Evaluation

4.1 Experimental Setup

Our case study followed the standard multi-label classification setting. The met-
rics, model families, and datasets used are introduced next.

Metrics for model performance: mean average precision (mAP) over
all categories and accuracy for multi-label (described in Eq.1) is adopted for
evaluating the performance of models. The larger the ACC and mAP, the better
the model performance.

Metrics for the consistency between the performance and inter-
pretability: ECEyy, (described in Eq.4) with 20 bins is to evaluate the consis-
tency between accuracy and confidence. VICE (described in Eq. 8) is to measure
the consistency between performance and visual interpretability. The smaller
the ECEyr, and VICE, the greater the consistency of model performance and
interpretability.
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Model families. We select recent and historic state-of-the-art classification
models, including ResNet [14], Res2Net [8], EfficientNet [26], ResNeSt [31], ViT
[7]. If not explicitly mentioned, all of them are pre-trained on ImageNetlk [5]
with full supervision.

Datasets. We evaluate on PASCAL VOC 2012 dataset with 21 class anno-
tations. The official dataset separation has 1464 images for training, 1449 for
validation, and 1456 for testing. Following the common experimental protocol,
we take additional annotations from SBD [12] to build an augmented training
set with 10582 images, which is named as VOC2012Aug. It provides labels for
semantic segmentation, which allows us to evaluate the quality of the CAMs
(Eq. 6). All metrics reported were performed on the validation set.

4.2 Models with Different Capacity

Table 1. Models with Different Capacity. The VICE does not monotonically increase
with increasing model capacity.

Model Params | mAP (%)7/Acc (%) 1| ECEwmL (%)] | VICE 1
ResNet-18 11.177 M | 83.917/72.188 14.897 0.185
ResNet-34 21.285 M | 86.296,/76.945 14.257 0.226
ResNet-50 23.508 M | 87.470/78.617 13.401 0.215
ResNeSt-14 |8.563 M | 85.382/75.329 13.989 0.342
ResNeSt-26 | 15.020 M | 87.395/79.170 13.248 0.311
ResNeSt-50 | 25.434 M | 88.031/79.117 12.978 0.322
ResNeSt-101 | 46.226 M | 88.856/80.415 12.735 0.272
ViT-Small |21.975 M | 90.253/81.172 10.361 0.393
ViT-Base 86.416 M | 91.238/81.657 10.313 0.389

Table 1 reports the model performance, ECEy,, and VICE of the models
with different capacities. As the model capacity increases, the mAP is increasing,
and its ECEyyy, is decreasing, which is beneficial for practical tasks. But the
VICE does not monotonically increase with increasing model capacity, which is
confirmed in three architectures.

Discussion. Model capacity and representation capability have always been con-
sidered key to improving performance, but models are often over-parameterized.
Increasing the model capacity would have a performance bottleneck and also
increase the risk of overfitting. Blindly increasing model capacity may harm visual
interpretability and consistency, which is unfavorable for scenarios highly depen-
dent on visual interpretability.

4.3 Models with Various Architecture

To compare the impact of different model architectures fairly, we selected
five models with similar model size and various feature extraction preferences.
Figure 2 shows the ECEy, metrics for different models. From Eq. 3, if the confi-
dence level of all classes is less than ¢, then the accuracy of this sample is equal
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Fig.2. We divided the samples into different bins according to the loss. The figure
above shows the number of samples in each bin, and the figure below shows the accuracy
and confidence in each bin. Regardless of the number of samples in each bin, the output
prediction probabilities (light blue blocks) generally fall below the straight line y=x
(dark blue blocks), which means that the deep model is prone to over-confidence. (Color
figure oline)

Table 2. Models with Various Architecture. ResNeSt and ViT outperform ResNet in
JI score, and their VICE fail to be better than that of ResNet.

Model Params | mAP (%)1/Acc (%) T ECEwmw (%)| | VICE 1
ResNet-50 23.508 M | 87.470/78.617 13.401 0.215
Res2Net-50 23.238 M | 86.759/77.180 13.297 0.114
ResNeSt-50 25.434 M | 88.031/79.117 12.978 0.322
EfficientNet-b4 | 17.549 M | 83.690/71.180 11.765 0.449
ViT-Small 21.975 M | 90.253/81.172 10.361 0.393

to zero, which is the reason why the accuracy in the bins with confidence below
0.5 is zero. ECEyyy, is the calculation of the average discrepancy between the two
statistical histograms. We find that the lower histogram shows that the output
prediction probabilities (light blue parts) generally fall below the straight line
y = z (dark blue parts), which means that the deep model is prone to over-
confidence. Moreover, according to Fig. 2, we can also conclude that the model
calibration of the vision transformer is better than that of CNN. This inspires us
to consider the potential of non-CNN models such as vision transformer, which
not only unifies feature encoding architectures for multimodal tasks but also has
better model calibration with lower ECEyp,. On the other hand, Table 2 shows
the VICE score for different model architectures. ResNeSt and ViT outperform
ResNet in terms of VICE score with comparable model sizes, suggesting that the
CAMs of the models with integrated attention mechanisms are more complete.
And EfficientNet-b4 has the highest VICE score, which hints at the potential
of NAS-based architectures to achieve a better tradeoff between interpretability
and performance.

Discussion. Models of different architectures have different consistency prefer-
ences, and the integration of multiple model architectures may improve inter-
pretability for a given task.
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4.4 Consistency Study with Self-supervised Pre-trained Models

Motivation. Recent approaches such as [1,3,4,10,13,18,28] show that the fea-
tures extracted from networks training with a self-supervised learning paradigm
can achieve better performance on downstream tasks that require more object
semantics, such as object detection and semantic segmentation, which sparked
the interest of many researchers. A large number of self-supervised learning algo-
rithms focus on instance discrimination, considering a single image as a class,
encouraging the model to bring the sample and its augmented image as close
as possible on the feature space. MoCo [13] and SimCLR [3] with contrastive
self-supervised learning even surpass the results of supervised learning. Refer-
ence [4] is the first work to apply self-supervision to Vision Transformer. DINO
[1] explores the self-supervised approach so that ViT contains features related
to semantic segmentation of images, which is useful for downstream tasks. Self-
supervised models are more interpretable if they can explore target locations.
Since the self-supervised learning paradigm is not constrained by category infor-
mation, which allows the network to freely explore its suitable region of interest,
rather than just focusing on the features about classification tasks. Therefore,
we evaluate the performance of ResNet and ViT using different self-supervised
schemes.

Table 3. Various Pre-train Setting with ResNet-50.

Model Pre-train Dataset Pre-train Alg | Finetuning | mAP (%) 1/Acc (%) 1| ECEwmwL (%) | | VICE 1
ResNet-50 | ImageNet Supervised - 87.470/78.617 13.401 0.215
ResNet-50 | ImageNet BYOL - 74.827/62.762 19.087 0.305
ResNet-50 | ImageNet DINO - 73.147/57.978 18.080 0.203
ResNet-50 | ImageNet MoCov3 - 76.200/64.114 18.212 0.324
ResNet-50 | VOC2012Aug MoCov3 - 39.701/21.731 28.483 0.348
ResNet-50 | ImageNet Supervised | fc 84.492/74.028 12.510 0.260
ResNet-50 | TmageNet BYOL fe 59.351/27.029 24.452 0.369
ResNet-50 | ImageNet DINO fe 71.158/42.312 17.652 0.282
ResNet-50 | ImageNet MoCov3 fe 70.336,/28.532 23.176 0.251
ResNet-50 | VOC2012Aug MoCov3 fe 38.105/19.587 29.203 0.401

Table 4. Various Pre-train Setting with ViT-Base.

Model Pre-train Dataset Pre-train Alg | Finetuning | mAP (%) 1/Acc (%) 1| ECEwmL (%) | | VICE T
ViT-Base | ImageNet Supervised - 91.238/81.657 10.313 0.389
ViT-Base | ImageNet DINO - 82.963/71.667 14.126 0.412
ViT-Base | ImageNet MoCov3 - 69.940/53.662 15.116 0.456
ViT-Base | VOC2012Aug MoCov3 - 50.173/27.923 25.317 0.331
ViT-Base | ImageNet Supervised | head 88.329/80.267 11.300 0.430
ViT-Base | ImageNet DINO head 87.991/79.440 11.607 0.466
ViT-Base | ImageNet MoCov3 head 70.966/55.786 13.107 0.493
ViT-Base | VOC2012Aug MoCov3 head 52.738/33.101 23.105 0.404
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Tables3 and 4 reports the performance under different pre-training
paradigms when using ResNet-50/ViT-Base for feature extraction. Performance
and ECEyp, of the models obtained by the supervised pre-training approach
were superior to the self-supervised groups. However, in the experimental group
loaded with the self-supervised pre-trained model, the VICE scores were gen-
erally better than those in the supervised group, which shows the potential of
unsupervised pre-training in improving model interpretability.

For the evaluation protocol that fixes the backbone weights and learns only
on the fc or head layer, the linear combination of only the features learned
from pre-training stage can better exploit the advantages of different pre-training
approaches. MoCov3 [4] obtains the highest VICE score in the unsupervised app-
roach, which indicates that its learned features have strong visual interpretabil-
ity. The absolute performance using the unsupervised pre-training approach is
not very high, but they have a higher VICE score, indicating that their perfor-
mance is more consistent with visual interpretability.

Discussion. Experimental exploration of model interpretability with various
pre-training settings shows the potential of self-supervised learning to improve
the consistency between model performance and interpretability, freeing us from
the constraints of classification-based pre-training on ImageNet, allowing perfor-
mance and interpretability to go hand in hand, and truly exploiting the potential
of deep learning techniques. Compared to the supervised experimental group, the
self-supervised schemes can achieve higher VICE score with the same settings.

4.5 How Regularization Enforces Interpretability Conformance?

Motivation. There is some recent work aimed to make classic Convnets like
VGG [25] and ResNet [14] great again [6,23,30]. The performance of CNN is
improved from the perspective of data and model[16,17], respectively. This indi-
cates that the upper bound of deep neural networks has not been fully explored
until now.

Table 5. The Impact of Regularization Techniques.

Model Regularization | mAP (%) 1/Acc (%) 1| ECEmL (%) | | VICE 1
ResNet-50 87.907/80.071 13.723 0.302
ResNet-50 | Weight Decay 87.470/78.617 14.401 0.315
ResNet-50 | Random Erasing | 87.851/79.699 13.067 0.323
ViT-Base |— 90.968/82.724 9.368 0.379
ViT-Base | Weight Decay 91.238/81.657 10.313 0.389
ViT-Base | Random Erasing | 90.765/83.190 8.201 0.384

Random erasing data augmentation [33] and weight decay are evaluated the
performance in Table 5. Reference [19] is referred for the implementation of the
weight decay regularization mechanism. We find that training with weight decay
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harms ECEyp,, but it improves the VICE metric. Weight decay seems to improve
the quality of CAMs (JI Score) by constraining the model complexity and mit-
igating the model overfitting. Random erasing is a data augmentation method
that constructs new samples by randomly erasing a region to prevent the model
from overfitting the dataset. The random erasing data augmentation avoids over-
confidence and effectively improves model consistency between interpretability
and performance on the VICE metrics.

Discussion. As an essential tool to avoid overfitting, the regularization not only
improves the generalization performance but also impacts the interpretability of
the model. It encourages the model to achieve a trade-off between performance
and interpretability through extra learning objectives.

5 Other Related Work

Predictions from deep neural networks frequently suffer from over-confidence,
which leads to user distrust. Accurate estimation of prediction uncertainty
(model calibration) is essential for the safe application of neural networks. [24]
explore regularizing neural networks by penalizing low entropy output distri-
butions as a strong regularizer. Extensive experiments have shown in [20] that
structure is a major determinant of calibration characteristics.

Many strategies have been proposed to realize model calibration based on
ECE, such as temperature scaling [11], predictions ensemble [15,29]. It has been
applied in model calibration for such as graph neural networks [27] and long-
tailed recognition [32].

In contrast, the proposed consistency between model performance and visual
interpretability VICE also deserves attention. The community should not only
focus on model performance but also on achieving a better tradeoff in model
performance and interpretability.

6 Conclusion

We proposed VICE as a novel sample-wise fine-grained metric to synergistically
evaluate the consistency between model performance and visual interpretability
from a different perspective. We selected five types of heterogeneous models for
case studies using VICE and ECEyy, from different perspectives, and we found
a series of inspiring phenomena:

— Blindly increasing the model capacity may harm model interpretability.

— ResNeSt and ViT, designed upon the visual attention mechanism, have bet-
ter visual interpretability and ECEyp,, but worse consistency between per-
formance and visual interpretability.

— The self-supervised pre-training setting gets rid of the supervised objectives,
and learns more interpretable feature representation, which shows the poten-
tial of the self-supervised learning paradigm.
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— The learning objectives, introduced by different regularization, would also

encourage the model to learn more interpretable features.

The proposed metrics and the found phenomena will guide us to focus on and
leverage more significant impact factors for designing better performed and more
interpretable models in future studies.
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tion of China (62272229), National Key Research and Development Program of China
(No. 2021ZD0113200).
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